Difference between revisions of "Microduino-BM"

From Microduino Wiki
Jump to: navigation, search
(Applications)
(Features)
 
(45 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
{{Language|Microduino-BM}}
 
{| style="width: 800px;"
 
{| style="width: 800px;"
 
|-
 
|-
 
|
 
|
[[File:Microduino-BM-rect.jpg|400px|thumb|right|Microduino-BM]]
+
[[File:Microduino-bm-rect.jpg|400px|thumb|right|Microduino-BM]]
  
  
  
'''[[Microduino-BM]]''' module is an integrated single-cell Li-ion battery charge management,  
+
'''[[Microduino-BM]]''' is a discharging module which combines a single-cell Li-ion battery charge management,  
power detection and LED indication, the boost to 5V output, LDO to 3.3V output of discharge management module.
+
power detection and LED indication. The output voltage is 5V, and LDO is 3.3V output, providing the outstanding battery management for the Microduino-Core module.  
 
 
  
  
Line 16: Line 16:
 
|
 
|
 
==Features==
 
==Features==
* Charge and discharge management, power detection, 5v boost, 3.3v LDO highly integrated;
+
*Support UPS(Uninterrupted Power Supply).
* DIP switch gear charging and discharging, a key to open, hibernation module;
+
* Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO.
* Small, cheap, stack, open;
+
* Small,stackable, and economic.
* Unified Microduino interface specification, and rich peripheral modules can be easily and flexibly with other eligible Microduino interface specification modules, sensors for quick connection and expansion;
+
* With a uniform Microduino interface standard and rich peripheral modules, it can easily connect with other Microduino modules and sensors.
* 2.54 pitch row female connector for easy integration into breadboard.
+
* 2.54mm (0.1 inch) pin pitch, compatible with bread boards and pegboards.
  
 
|-
 
|-
 
|
 
|
 +
 
==Specifications==
 
==Specifications==
* First, let's look at the interface of the module:
+
===Interface===
* A key switch
+
** A two-notch toggle switch to control the output voltage (5v and 3.3v);
* A two tranches DIP switch gear
+
**A MicroUSB interface for power charging. 
* One pair of 2.54 battery interface ("+" then the battery positive, "-" then the battery negative)
+
**A 1.27-pitch battery interface;
* UPIN27 on the role of interface has 5V, 3V3, GND:
+
** UPIN27 contains the 5V, 3V3 and GND interface; (The analog voltage detection of BM can be selected between A6 and A7, and the digital low voltage will be output to D2 interface. Please don’t rely protection circuit to protect the battery, which only works in extreme circumstance. You can use mcu to detect the voltage of the battery and then judge the battery’s charge. )  
 +
 
  
 
|-
 
|-
 
|
 
|
==Charging==
+
 
* First access external 5V charging power supply, and then switch to "IN", the module into the charging state, then four LED lights do Surge charging indication (detailed display mode, please refer to HT4901 documentation), the maximum charging current to 500mA, charging is completed * after the first switch to OUT, and then unplug the external 5V charging power.
+
===Charging===
* Note:
+
*Plug in MicroUSB and charge the lithium battery with the current of 600ma.  
* Always follow the charging process: make sure switch to OUT, plug in the battery, charging access external 5V power supply, the switch in the IN, start charging, charging is completed, the switch to OUT, unplug the external 5V Charge power.
+
*The indicator goes on when charging and goes out after finishing.
* Recommended charging power supply: Voltage 5v, current 600ma above;
+
 
* Not add pressure drop impact elements (diodes) in the charging circuit, so as not to reach the charging voltage, thereby affecting the charging current.
 
  
 
|-
 
|-
 
|
 
|
==Discharge==
+
 
* Make sure the switch is in the OUT, after access to the battery, in the standby mode, short press button switch (time> 50mS), the module that wakes up from standby mode; boost output started at this time, while open UPIN27 the GND circuit: Interface 5V 5V output voltage, maximum current of 500mA; while 3V3 interface output voltage of 3.3V, the maximum current 250mA.
+
===Discharging===
* When the battery voltage under-voltage (3.3V) or enter limiting / boost output short circuit protection, enter standby mode.
+
*When you plug in MicroUSB, the 5v or 3.3v voltage is powered through MicroUSB. Otherwise, the voltage will be supplied by the lithium battery. Meantime, you need to pull the power output switch to “ON”. If it is not started, please plug in MicroUSB to activate and then try again.  
* Note:
+
*The indicator goes on when there is electricity output, otherwise, it goes out.  
* Make sure the switch is in the OUT and then start boost output;
+
*5V offers 1a electricity output and 3.3V offers 700ma output.
* please do not toggle switch in Battery-powered process.
 
  
 
|-
 
|-
 
|
 
|
==Power detection==
 
* Make sure the switch is in the OUT, after access to the battery, press button switch on the built-in battery detection; and through the four LED indicator for battery indicator, battery indicator after 3 ~ 5S closed.
 
  
 +
===Low-voltage Battery Protection===
 +
{|class="wikitable"
 +
|-
 +
| Undervoltage indication|| 3.60V
 +
|-
 +
| Low-voltage protection ||2.40V
 +
|-
 +
|Indicator-off voltage when the voltage gets back.||3.71V
 +
|}
 +
 +
Low voltage indicator goes on under 3.60V and when the voltage keeps decreasing to 2.40V, the lithium battery protection circuit works. The indicator will go out when the battery is powered to 3.71V.
 +
 +
 +
===Short-circuit Protection===
 +
When the output current reaches '''1.2A''', the lithium battery protection circuit starts and cuts off power supply. The circuit will be activated and get back to work only when you plug in MicroUSB to charge. '''
 +
 +
===Efficiency of BM and Its Load Driven Capacity===
 +
100ma 5.05v output:
 +
{|class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 
|-
 
|-
|
+
| Input current||139||148||156||166||178||190||204||220
==Standby==
+
|-
* (Standby circuit is disconnected UPIN27 the GND and BM can be controlled within the overall power consumption of 30uA)
+
| Efficiency||86.50%||85.30%||85.20%||84.50%||83.40%||83.10%||82.50%||82.00%
* Make sure the switch is in the OUT, if any action after accessing the battery, then the default is in standby mode.
+
|}
* When you've turned on discharge mode by pressing the button switch (3s above) to enter standby mode.
 
* Intelligent Detection: No charge input, no discharge output (<10mA) within three minutes into standby mode.
 
  
 +
300ma 5.05v output:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||411||437||460||492||525||570||615||679
 +
|-
 +
| Efficiency||87.80%||87.10%||86.90%||85.40%||84.70%||82.90%||81.50%||79.70%
 +
|}
 +
500ma 5.05v output:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||706||746||800||863||938||1028||1157
 +
|-
 +
| Efficiency||85.20%||84.60%||83.10%||81.30%||79.20%||76.80%||72.70%||
 +
|}
 +
700ma 5.05v output:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||1025||1104||1189||1313||1510
 +
|-
 +
| Efficiency||82.10%||80.00%||78.20%||74.80%||68.90%
 +
|}
 +
1A 5.05v output:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||1622||1842
 +
|-
 +
| Efficiency||74.10%||68.50%
 +
|}
  
 +
[[file:Micrmodule-BM-Analysis.jpg|thumb|600px|center|image]]
  
 +
We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma. 
  
 +
===Temperature Rise of System Operation===
 +
Temperature rise under 5v output and 30 ℃ indoor:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''3-minute '''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''5-minute '''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''10-minute '''
 +
|-
 +
| Current||300||500||700||300||500||700||300||500||700
 +
|-
 +
| Temperature||32||35.8||46||32.7||40||48||32.7||40||51
 +
|}
 +
Temperature rise under 3.3v output and 26 ℃ indoor:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''3-minute'''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''5-minute'''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''10-minute'''
 
|-
 
|-
|
+
| Current||100||300||500||300||500||700||300||500||700
 +
|-
 +
| Temperature||27.5||32||40||28.5||35||44||28.5||38||49
 +
|}
 +
 
 +
 
 
==Documents==
 
==Documents==
* Snapshot of '''[[Microduino-BM]]''' schematic
+
Eagle PCB '''[[File:Microduino-BM.zip]]''
:[[file:Microduino-BM-SCH.png|600px|thumb|left|Microduino-BM Schematic]]
 
<br style="clear: left"/>
 
:[[file:Microduino-BM-PCB.png|600px|thumb|left|Microduino-BM PCB]]
 
<br style="clear: left"/>
 
* '''[[Microduino-BM]]''' Eagle source file 【'''[[media:Microduino-BM.zip|download]]'''】
 
* '''[[Microduino-BM]]''' main chips and devices
 
 
 
:[[file:Micromodule-BM-1.png|800px|thumb|left|Microduino-BM-Pinout]]
 
<br style="clear: left"/>
 
:[[file:Micromodule-BM-2.png|800px|thumb|left|Microduino-BM-Pinout]]
 
  
  
 
<br style="clear: left"/>
 
<br style="clear: left"/>
'''The main components'''
+
'''Main components'''
  
 
*Chip 1: HT4901 HT4901 Application guidelines [[Media: HT4901 Application guidelines V1.1.pdf]]
 
*Chip 1: HT4901 HT4901 Application guidelines [[Media: HT4901 Application guidelines V1.1.pdf]]
 
*Chip 2: LP2985AIM5X-3.3  [[Media:LP2985.pdf]]
 
*Chip 2: LP2985AIM5X-3.3  [[Media:LP2985.pdf]]
*MOS tube: AO3400 [[Media:AO3400.pdf]]
+
*MOSFET: AO3400 [[Media:AO3400.pdf]]
 
*Schottky diodes: MBR0520  [[Media:MBR0520.pdf]]
 
*Schottky diodes: MBR0520  [[Media:MBR0520.pdf]]
*Button switch: TS-018 [[Media:TS-018.pdf]]
+
*Toggle switch: MSK-12C01 (1P2T) [[Media:MSK-12C01(1P2T).pdf]].
*Toggle switch: MSK-12C01 (1P2T) [[Media:MSK-12C01 (1P2T) pdf]].
 
 
 
  
 
|-
 
|-
Line 97: Line 206:
 
==Development==
 
==Development==
  
*Battery: single 3.7v lithium battery;
+
*Battery: single-cell 3.7v li-ion battery;
 
*Recommended battery module is connected with 2PIN DuPont;
 
*Recommended battery module is connected with 2PIN DuPont;
*Recommended power supply options: voltage 5V, current 600ma above, such as: computer USB, 5V phone charger.
+
*Recommended power options: voltage 5V, current 600ma above, such as: computer USB, 5V phone charger.
 
 
 
 
  
  
Line 109: Line 216:
 
==Applications==
 
==Applications==
  
 +
*Lithium battery charge 
 +
*Lithium battery voltage boosting to power Microduino core modules
  
When viewing the board with the battery connector and switches closest to you, with the component side up, the battery connector positive (+) pin is on the left and the ground (-) pin is on the right. The pushbutton switch is on the left and the mode switch (IN = Charge, lever to the left; OUT = Discharge, lever to the right) is on the right.
+
==Pictures==
 
+
[[file:Micrmodule-bm-t.jpg|thumb|600px|center|Micrmodule BM Front]]
After connecting the battery you must momentarily push the pushbutton switch to start the converter. You can stop the converter/turn off the power by unplugging the battery or by pressing and holding the pushbutton for a few seconds. To use the battery to generate +5 VDC and +3.3 VDC, set the mode switch (to the right of the battery connector when viewed as described above) to OUT (switch lever away from the battery connector). The IN position is used for charging the battery from an external 5VDC, >=600 mA source.
+
[[file:Micrmodule-bm-b.jpg|thumb|600px|center|Micrmodule BM Back]]
 
 
The charging current is 500 mA, so I recommend a battery with at least 500 mAH of capacity to avoid charging at a rate >1C.
 
 
 
A rough English translation of the charging process is as follows:
 
*Set the mode switch to OUT (switch lever away from the battery connector);
 
*Plug in the battery;
 
*Plug in the external 5VDC power supply (at least a 600 mA supply recommended);
 
*Set the mode switch to IN (switch lever toward the battery connector);
 
*When charging is complete as indicated by all 4 LEDs on, set the mode switch to OUT (switch lever away from the battery connector);
 
*Unplug the external 5VDC power supply.
 
The LED indications seem to be as follows, based on how Google Translate translates the Chinese datasheet for the HOTCHIP HT4901 at
 
[http://www.hotchip.com.cn/DownFiles/20131126090806453.pdf:]
 
 
 
Discharge Mode
 
Voltage LED1 LED2 LED3 LED4
 
3.2-3.5V ON OFF OFF OFF
 
3.5-3.65V ON ON OFF OFF
 
3.65-3.95V ON ON ON OFF
 
> 3.95V ON ON ON ON
 
 
 
If the voltage drops below 3.2V, LED1 flashes and within 5 seconds the HT4901 goes to standby mode (I think... or should I say I hope...) to avoid over-discharging your battery.
 
 
 
Charge Mode
 
Voltage LED1 LED2 LED3 LED4
 
<3.4V FLASH FLASH FLASH FLASH
 
3.4-3.8V ON FLASH FLASH FLASH
 
3.8-4.0V ON ON FLASH FLASH
 
4.0-4.25V ON ON ON FLASH
 
>= 4.25V ON ON ON ON
 
 
 
Be prepared to terminate the charging process immediately when all four LEDs are on and steady. Overcharging lithium-type batteries may result in a nasty fire. I don't know how good the HT4901 is at detecting that the charging process is complete and shutting off the charging current to the battery.
 
 
 
Hope I correctly translated this information. /Chip
 
 
 
 
 
  
 
|-
 
|-
 
|
 
|
  
==Pictures==
+
==FQA==
[[file:Micrmodule-BM-T.jpg|thumb|600px|center|Micrmodule BM Front]]
 
[[file:Micrmodule-BM-B.jpg|thumb|600px|center|Micrmodule BM Back]]
 
 
 
 
 
 
 
  
|-
 
|
 
 
==History==
 
==History==
 +
November 14, 2013 new release, major improvements:
 +
*Canceled VMOT pin, use the toggle switch directly and use the 5V port switching charge and discharge;
 +
*Boost pushbutton can fully control the boost, UPIN27 the GND loop off.
 +
*March 13, 2013 Batch completed.
 +
*March 1, 2013 20130202 edition model released, testing is no big problem.
 +
*February 2, 2013, using mobile power ASIC chip, re-layout.
 +
*December 31, 2012, released the test panels, the main problems are:
 +
*No 5V output;
 +
*Battery Interface leakage;
 +
*No power display.
  
 
|}
 
|}

Latest revision as of 08:35, 17 November 2015

Language: English  • 中文
Microduino-BM


Microduino-BM is a discharging module which combines a single-cell Li-ion battery charge management, power detection and LED indication. The output voltage is 5V, and LDO is 3.3V output, providing the outstanding battery management for the Microduino-Core module.



Features

  • Support UPS(Uninterrupted Power Supply).
  • Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO.
  • Small,stackable, and economic.
  • With a uniform Microduino interface standard and rich peripheral modules, it can easily connect with other Microduino modules and sensors.
  • 2.54mm (0.1 inch) pin pitch, compatible with bread boards and pegboards.

Specifications

Interface

    • A two-notch toggle switch to control the output voltage (5v and 3.3v);
    • A MicroUSB interface for power charging.
    • A 1.27-pitch battery interface;
    • UPIN27 contains the 5V, 3V3 and GND interface; (The analog voltage detection of BM can be selected between A6 and A7, and the digital low voltage will be output to D2 interface. Please don’t rely protection circuit to protect the battery, which only works in extreme circumstance. You can use mcu to detect the voltage of the battery and then judge the battery’s charge. )


Charging

  • Plug in MicroUSB and charge the lithium battery with the current of 600ma.
  • The indicator goes on when charging and goes out after finishing.


Discharging

  • When you plug in MicroUSB, the 5v or 3.3v voltage is powered through MicroUSB. Otherwise, the voltage will be supplied by the lithium battery. Meantime, you need to pull the power output switch to “ON”. If it is not started, please plug in MicroUSB to activate and then try again.
  • The indicator goes on when there is electricity output, otherwise, it goes out.
  • 5V offers 1a electricity output and 3.3V offers 700ma output.

Low-voltage Battery Protection

Undervoltage indication 3.60V
Low-voltage protection 2.40V
Indicator-off voltage when the voltage gets back. 3.71V

Low voltage indicator goes on under 3.60V and when the voltage keeps decreasing to 2.40V, the lithium battery protection circuit works. The indicator will go out when the battery is powered to 3.71V.


Short-circuit Protection

When the output current reaches 1.2A, the lithium battery protection circuit starts and cuts off power supply. The circuit will be activated and get back to work only when you plug in MicroUSB to charge.

Efficiency of BM and Its Load Driven Capacity

100ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 139 148 156 166 178 190 204 220
Efficiency 86.50% 85.30% 85.20% 84.50% 83.40% 83.10% 82.50% 82.00%

300ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 411 437 460 492 525 570 615 679
Efficiency 87.80% 87.10% 86.90% 85.40% 84.70% 82.90% 81.50% 79.70%

500ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 706 746 800 863 938 1028 1157
Efficiency 85.20% 84.60% 83.10% 81.30% 79.20% 76.80% 72.70%

700ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 1025 1104 1189 1313 1510
Efficiency 82.10% 80.00% 78.20% 74.80% 68.90%

1A 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 1622 1842
Efficiency 74.10% 68.50%
image

We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma.

Temperature Rise of System Operation

Temperature rise under 5v output and 30 ℃ indoor:

3-minute 5-minute 10-minute
Current 300 500 700 300 500 700 300 500 700
Temperature 32 35.8 46 32.7 40 48 32.7 40 51

Temperature rise under 3.3v output and 26 ℃ indoor:

3-minute 5-minute 10-minute
Current 100 300 500 300 500 700 300 500 700
Temperature 27.5 32 40 28.5 35 44 28.5 38 49


Documents

Eagle PCB 'File:Microduino-BM.zip



Main components

Development

  • Battery: single-cell 3.7v li-ion battery;
  • Recommended battery module is connected with 2PIN DuPont;
  • Recommended power options: voltage 5V, current 600ma above, such as: computer USB, 5V phone charger.


Applications

  • Lithium battery charge
  • Lithium battery voltage boosting to power Microduino core modules

Pictures

Micrmodule BM Front
Micrmodule BM Back

FQA

History

November 14, 2013 new release, major improvements:

  • Canceled VMOT pin, use the toggle switch directly and use the 5V port switching charge and discharge;
  • Boost pushbutton can fully control the boost, UPIN27 the GND loop off.
  • March 13, 2013 Batch completed.
  • March 1, 2013 20130202 edition model released, testing is no big problem.
  • February 2, 2013, using mobile power ASIC chip, re-layout.
  • December 31, 2012, released the test panels, the main problems are:
  • No 5V output;
  • Battery Interface leakage;
  • No power display.