Difference between revisions of "Microduino-BM"
(→Applications) |
(→Features) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
|- | |- | ||
| | | | ||
− | [[File:Microduino- | + | [[File:Microduino-bm-rect.jpg|400px|thumb|right|Microduino-BM]] |
Line 16: | Line 16: | ||
| | | | ||
==Features== | ==Features== | ||
− | *Support UPS | + | *Support UPS(Uninterrupted Power Supply). |
− | * Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO | + | * Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO. |
− | * Small | + | * Small,stackable, and economic. |
− | * | + | * With a uniform Microduino interface standard and rich peripheral modules, it can easily connect with other Microduino modules and sensors. |
− | * 2. | + | * 2.54mm (0.1 inch) pin pitch, compatible with bread boards and pegboards. |
|- | |- | ||
Line 70: | Line 70: | ||
===Efficiency of BM and Its Load Driven Capacity=== | ===Efficiency of BM and Its Load Driven Capacity=== | ||
100ma 5.05v output: | 100ma 5.05v output: | ||
− | + | {|class="wikitable" | |
+ | | align="center" style="background:#f0f0f0;"|'''Input voltage''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.8''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.6''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''2.8''' | ||
|- | |- | ||
− | | | + | | Input current||139||148||156||166||178||190||204||220 |
+ | |- | ||
+ | | Efficiency||86.50%||85.30%||85.20%||84.50%||83.40%||83.10%||82.50%||82.00% | ||
+ | |} | ||
+ | |||
300ma 5.05v output: | 300ma 5.05v output: | ||
− | + | {| class="wikitable" | |
+ | | align="center" style="background:#f0f0f0;"|'''Input voltage''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.8''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.6''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''2.8''' | ||
|- | |- | ||
− | | | + | | Input current||411||437||460||492||525||570||615||679 |
+ | |- | ||
+ | | Efficiency||87.80%||87.10%||86.90%||85.40%||84.70%||82.90%||81.50%||79.70% | ||
+ | |} | ||
500ma 5.05v output: | 500ma 5.05v output: | ||
− | + | {| class="wikitable" | |
+ | | align="center" style="background:#f0f0f0;"|'''Input voltage''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.8''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.6''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''2.8''' | ||
+ | |- | ||
+ | | Input current||706||746||800||863||938||1028||1157 | ||
|- | |- | ||
− | | | + | | Efficiency||85.20%||84.60%||83.10%||81.30%||79.20%||76.80%||72.70%|| |
+ | |} | ||
700ma 5.05v output: | 700ma 5.05v output: | ||
− | + | {| class="wikitable" | |
+ | | align="center" style="background:#f0f0f0;"|'''Input voltage''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.8''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.6''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''2.8''' | ||
+ | |- | ||
+ | | Input current||1025||1104||1189||1313||1510 | ||
|- | |- | ||
− | | | + | | Efficiency||82.10%||80.00%||78.20%||74.80%||68.90% |
+ | |} | ||
1A 5.05v output: | 1A 5.05v output: | ||
− | + | {| class="wikitable" | |
+ | | align="center" style="background:#f0f0f0;"|'''Input voltage''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.8''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.6''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.4''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3.2''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''3''' | ||
+ | | align="center" style="background:#f0f0f0;"|'''2.8''' | ||
|- | |- | ||
− | | | + | | Input current||1622||1842 |
− | |||
|- | |- | ||
− | | | + | | Efficiency||74.10%||68.50% |
+ | |} | ||
+ | |||
+ | [[file:Micrmodule-BM-Analysis.jpg|thumb|600px|center|image]] | ||
+ | |||
We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma. | We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma. | ||
===Temperature Rise of System Operation=== | ===Temperature Rise of System Operation=== | ||
Temperature rise under 5v output and 30 ℃ indoor: | Temperature rise under 5v output and 30 ℃ indoor: | ||
− | + | {| class="wikitable" | |
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"|'''3-minute ''' | ||
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"|'''5-minute ''' | ||
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"|'''10-minute ''' | ||
|- | |- | ||
− | | | + | | Current||300||500||700||300||500||700||300||500||700 |
+ | |- | ||
+ | | Temperature||32||35.8||46||32.7||40||48||32.7||40||51 | ||
+ | |} | ||
Temperature rise under 3.3v output and 26 ℃ indoor: | Temperature rise under 3.3v output and 26 ℃ indoor: | ||
− | + | {| class="wikitable" | |
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"|'''3-minute''' | ||
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"|'''5-minute''' | ||
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"| | ||
+ | | align="center" style="background:#f0f0f0;"|'''10-minute''' | ||
|- | |- | ||
− | | | + | | Current||100||300||500||300||500||700||300||500||700 |
+ | |- | ||
+ | | Temperature||27.5||32||40||28.5||35||44||28.5||38||49 | ||
+ | |} | ||
+ | |||
==Documents== | ==Documents== | ||
Line 136: | Line 220: | ||
==Pictures== | ==Pictures== | ||
− | [[file:Micrmodule- | + | [[file:Micrmodule-bm-t.jpg|thumb|600px|center|Micrmodule BM Front]] |
− | [[file:Micrmodule- | + | [[file:Micrmodule-bm-b.jpg|thumb|600px|center|Micrmodule BM Back]] |
|- | |- | ||
Line 143: | Line 227: | ||
==FQA== | ==FQA== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==History== | ==History== |
Latest revision as of 08:35, 17 November 2015
Language: | English • 中文 |
---|
Microduino-BM is a discharging module which combines a single-cell Li-ion battery charge management, power detection and LED indication. The output voltage is 5V, and LDO is 3.3V output, providing the outstanding battery management for the Microduino-Core module.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ContentsFeatures
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SpecificationsInterface
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Charging
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Discharging
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Low-voltage Battery Protection
Low voltage indicator goes on under 3.60V and when the voltage keeps decreasing to 2.40V, the lithium battery protection circuit works. The indicator will go out when the battery is powered to 3.71V.
Short-circuit ProtectionWhen the output current reaches 1.2A, the lithium battery protection circuit starts and cuts off power supply. The circuit will be activated and get back to work only when you plug in MicroUSB to charge. Efficiency of BM and Its Load Driven Capacity100ma 5.05v output:
300ma 5.05v output:
500ma 5.05v output:
700ma 5.05v output:
1A 5.05v output:
We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma. Temperature Rise of System OperationTemperature rise under 5v output and 30 ℃ indoor:
Temperature rise under 3.3v output and 26 ℃ indoor:
DocumentsEagle PCB 'File:Microduino-BM.zip
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Development
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Applications
Pictures | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FQAHistoryNovember 14, 2013 new release, major improvements:
|