Difference between revisions of "Microduino-BM"

From Microduino Wiki
Jump to: navigation, search
(Documents)
(Features)
 
(5 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
|-
 
|-
 
|
 
|
[[File:Microduino-BM-rect.jpg|400px|thumb|right|Microduino-BM]]
+
[[File:Microduino-bm-rect.jpg|400px|thumb|right|Microduino-BM]]
  
  
Line 16: Line 16:
 
|
 
|
 
==Features==
 
==Features==
*Support UPS;
+
*Support UPS(Uninterrupted Power Supply).
* Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO;
+
* Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO.
* Small, cheap, stackable, open;
+
* Small,stackable, and economic.
* Uniform Microduino interface standard and rich peripheral modules, capable of having a fast and flexible connection and extension with other modules and sensors in accord with Microduino interface standard;.  
+
* With a uniform Microduino interface standard and rich peripheral modules, it can easily connect with other Microduino modules and sensors.  
* 2.54-pitch row female connector for easy integration into pegboards.
+
* 2.54mm (0.1 inch) pin pitch, compatible with bread boards and pegboards.
  
 
|-
 
|-
Line 70: Line 70:
 
===Efficiency of BM and Its Load Driven Capacity===
 
===Efficiency of BM and Its Load Driven Capacity===
 
100ma 5.05v output:
 
100ma 5.05v output:
[[file:Micrmodule-BM-100.jpg|thumb|600px|left|100ma/5.05V]]
+
{|class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 
|-
 
|-
|  
+
| Input current||139||148||156||166||178||190||204||220
 +
|-
 +
| Efficiency||86.50%||85.30%||85.20%||84.50%||83.40%||83.10%||82.50%||82.00%
 +
|}
 +
 
 
300ma 5.05v output:
 
300ma 5.05v output:
[[file:Micrmodule-BM-300.jpg|thumb|600px|left|300ma/5.05V]]
+
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 
|-
 
|-
|  
+
| Input current||411||437||460||492||525||570||615||679
 +
|-
 +
| Efficiency||87.80%||87.10%||86.90%||85.40%||84.70%||82.90%||81.50%||79.70%
 +
|}
 
500ma 5.05v output:
 
500ma 5.05v output:
[[file:Micrmodule-BM-500.jpg|thumb|600px|left|500ma/5.05V]]
+
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||706||746||800||863||938||1028||1157
 
|-
 
|-
|  
+
| Efficiency||85.20%||84.60%||83.10%||81.30%||79.20%||76.80%||72.70%||
 +
|}
 
700ma 5.05v output:
 
700ma 5.05v output:
[[file:Micrmodule-BM-700.jpg|thumb|600px|left|700ma/5.05V]]
+
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||1025||1104||1189||1313||1510
 
|-
 
|-
|  
+
| Efficiency||82.10%||80.00%||78.20%||74.80%||68.90%
 +
|}
 
1A 5.05v output:
 
1A 5.05v output:
[[file:Micrmodule-BM-1A.jpg|thumb|600px|left|1A/5.05V]]
+
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 
|-
 
|-
|  
+
| Input current||1622||1842
[[file:Micrmodule-BM-Analysis.jpg|thumb|600px|left|image]]
 
 
|-
 
|-
|  
+
| Efficiency||74.10%||68.50%
 +
|}
 +
 
 +
[[file:Micrmodule-BM-Analysis.jpg|thumb|600px|center|image]]
 +
 
 
We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma.   
 
We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma.   
  
 
===Temperature Rise of System Operation===
 
===Temperature Rise of System Operation===
 
Temperature rise under 5v output and 30 ℃ indoor:
 
Temperature rise under 5v output and 30 ℃ indoor:
[[file:Micrmodule-BM-temp-30.jpg|thumb|600px|left]]
+
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''3-minute '''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''5-minute '''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''10-minute '''
 
|-
 
|-
|  
+
| Current||300||500||700||300||500||700||300||500||700
 +
|-
 +
| Temperature||32||35.8||46||32.7||40||48||32.7||40||51
 +
|}
 
Temperature rise under 3.3v output and 26 ℃ indoor:
 
Temperature rise under 3.3v output and 26 ℃ indoor:
[[file:Micrmodule-BM-temp-26.jpg|thumb|600px|left]]
+
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''3-minute'''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''5-minute'''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''10-minute'''
 +
|-
 +
| Current||100||300||500||300||500||700||300||500||700
 
|-
 
|-
|
+
| Temperature||27.5||32||40||28.5||35||44||28.5||38||49
 +
|}
 +
 
  
 
==Documents==
 
==Documents==
Line 132: Line 216:
 
==Applications==
 
==Applications==
  
 
+
*Lithium battery charge 
When viewing the board with the battery connector and switches closest to you, with the component side up, the battery connector positive (+) pin is on the left and the ground (-) pin is on the right. The pushbutton switch is on the left and the mode switch (IN = Charge, lever to the left; OUT = Discharge, lever to the right) is on the right.
+
*Lithium battery voltage boosting to power Microduino core modules
 
 
After connecting the battery you must momentarily push the pushbutton switch to start the converter. You can stop the converter/turn off the power by unplugging the battery or by pressing and holding the pushbutton for a few seconds. To use the battery to generate +5 VDC and +3.3 VDC, set the mode switch (to the right of the battery connector when viewed as described above) to OUT (switch lever away from the battery connector). The IN position is used for charging the battery from an external 5VDC, >=600 mA source.
 
 
 
The charging current is 500 mA, so I recommend a battery with at least 500 mAH of capacity to avoid charging at a rate >1C.
 
 
 
A rough English translation of the charging process is as follows:
 
*Set the mode switch to OUT (switch lever away from the battery connector);
 
*Plug in the battery;
 
*Plug in the external 5VDC power supply (at least a 600 mA supply recommended);
 
*Set the mode switch to IN (switch lever toward the battery connector);
 
*When charging is complete as indicated by all 4 LEDs on, set the mode switch to OUT (switch lever away from the battery connector);
 
*Unplug the external 5VDC power supply.
 
The LED indications seem to be as follows, based on how Google Translate translates the Chinese datasheet for the HOTCHIP HT4901 at
 
http://www.hotchip.com.cn/DownFiles/20131126090806453.pdf
 
 
 
Discharge Mode
 
 
 
:{|class="wikitable"
 
! Voltage
 
! LED1
 
! LED2
 
! LED3
 
! LED4
 
|-
 
| 3.2-3.5V
 
| ON
 
| OFF
 
| OFF
 
| OFF
 
|-
 
| 3.5-3.65V
 
| ON
 
| ON
 
| OFF
 
| OFF
 
|-
 
| 3.65-3.95V
 
| ON
 
| ON
 
| ON
 
| OFF
 
|-
 
| > 3.95V
 
| ON
 
| ON
 
| ON
 
| ON
 
|}
 
 
 
 
 
If the voltage drops below 3.2V, LED1 flashes and within 5 seconds the HT4901 goes to standby mode (I think... or should I say I hope...) to avoid over-discharging your battery.
 
 
 
Charge Mode
 
:{|class="wikitable"
 
! Voltage
 
! LED1
 
! LED2
 
! LED3
 
! LED4
 
|-
 
| <3.4V
 
| FLASH
 
| FLASH
 
| FLASH
 
| FLASH
 
|-
 
| 3.4-3.8V
 
| ON
 
| FLASH
 
| FLASH
 
| FLASH
 
|-
 
| 3.8-4.0V
 
| ON
 
| ON
 
| FLASH
 
| FLASH
 
|-
 
| 4.0-4.25V
 
| ON
 
| ON
 
| ON
 
| FLASH
 
|-
 
| >= 4.25V
 
| ON
 
| ON
 
| ON
 
| ON
 
|}
 
 
 
 
 
 
 
Be prepared to terminate the charging process immediately when all four LEDs are on and steady. Overcharging lithium-type batteries may result in a nasty fire. I don't know how good the HT4901 is at detecting that the charging process is complete and shutting off the charging current to the battery.
 
 
 
Hope I correctly translated this information.
 
 
 
 
 
 
 
|-
 
|
 
  
 
==Pictures==
 
==Pictures==
[[file:Micrmodule-BM-t.jpg|thumb|600px|center|Micrmodule BM Front]]
+
[[file:Micrmodule-bm-t.jpg|thumb|600px|center|Micrmodule BM Front]]
[[file:Micrmodule-BM-b.jpg|thumb|600px|center|Micrmodule BM Back]]
+
[[file:Micrmodule-bm-b.jpg|thumb|600px|center|Micrmodule BM Back]]
  
 
|-
 
|-
Line 244: Line 227:
  
 
==FQA==
 
==FQA==
*Does this module can power on other Microduino modules?
 
**Yes, most modules can be power by this module, except the big power module, such as GPRS module.
 
*Does the BM module and USB module can work together to power on Microduino module?
 
**Don't suggest use them like this, but our new BM version will support UPS.
 
*Does this module is programmable and set its state by software?
 
**No, it isn't programmable.
 
*What the max range of voltage and current?
 
**5V/500mA。
 
*Does this module can charge Li-ion battery?
 
**Yes.
 
*Do you have a module that can install a Li-ion battery?
 
**No.
 
*Does the Microduino module can use old mobile phone Li-ion battery.
 
**Yes.
 
  
 
==History==
 
==History==

Latest revision as of 08:35, 17 November 2015

Language: English  • 中文
Microduino-BM


Microduino-BM is a discharging module which combines a single-cell Li-ion battery charge management, power detection and LED indication. The output voltage is 5V, and LDO is 3.3V output, providing the outstanding battery management for the Microduino-Core module.



Features

  • Support UPS(Uninterrupted Power Supply).
  • Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO.
  • Small,stackable, and economic.
  • With a uniform Microduino interface standard and rich peripheral modules, it can easily connect with other Microduino modules and sensors.
  • 2.54mm (0.1 inch) pin pitch, compatible with bread boards and pegboards.

Specifications

Interface

    • A two-notch toggle switch to control the output voltage (5v and 3.3v);
    • A MicroUSB interface for power charging.
    • A 1.27-pitch battery interface;
    • UPIN27 contains the 5V, 3V3 and GND interface; (The analog voltage detection of BM can be selected between A6 and A7, and the digital low voltage will be output to D2 interface. Please don’t rely protection circuit to protect the battery, which only works in extreme circumstance. You can use mcu to detect the voltage of the battery and then judge the battery’s charge. )


Charging

  • Plug in MicroUSB and charge the lithium battery with the current of 600ma.
  • The indicator goes on when charging and goes out after finishing.


Discharging

  • When you plug in MicroUSB, the 5v or 3.3v voltage is powered through MicroUSB. Otherwise, the voltage will be supplied by the lithium battery. Meantime, you need to pull the power output switch to “ON”. If it is not started, please plug in MicroUSB to activate and then try again.
  • The indicator goes on when there is electricity output, otherwise, it goes out.
  • 5V offers 1a electricity output and 3.3V offers 700ma output.

Low-voltage Battery Protection

Undervoltage indication 3.60V
Low-voltage protection 2.40V
Indicator-off voltage when the voltage gets back. 3.71V

Low voltage indicator goes on under 3.60V and when the voltage keeps decreasing to 2.40V, the lithium battery protection circuit works. The indicator will go out when the battery is powered to 3.71V.


Short-circuit Protection

When the output current reaches 1.2A, the lithium battery protection circuit starts and cuts off power supply. The circuit will be activated and get back to work only when you plug in MicroUSB to charge.

Efficiency of BM and Its Load Driven Capacity

100ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 139 148 156 166 178 190 204 220
Efficiency 86.50% 85.30% 85.20% 84.50% 83.40% 83.10% 82.50% 82.00%

300ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 411 437 460 492 525 570 615 679
Efficiency 87.80% 87.10% 86.90% 85.40% 84.70% 82.90% 81.50% 79.70%

500ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 706 746 800 863 938 1028 1157
Efficiency 85.20% 84.60% 83.10% 81.30% 79.20% 76.80% 72.70%

700ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 1025 1104 1189 1313 1510
Efficiency 82.10% 80.00% 78.20% 74.80% 68.90%

1A 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 1622 1842
Efficiency 74.10% 68.50%
image

We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma.

Temperature Rise of System Operation

Temperature rise under 5v output and 30 ℃ indoor:

3-minute 5-minute 10-minute
Current 300 500 700 300 500 700 300 500 700
Temperature 32 35.8 46 32.7 40 48 32.7 40 51

Temperature rise under 3.3v output and 26 ℃ indoor:

3-minute 5-minute 10-minute
Current 100 300 500 300 500 700 300 500 700
Temperature 27.5 32 40 28.5 35 44 28.5 38 49


Documents

Eagle PCB 'File:Microduino-BM.zip



Main components

Development

  • Battery: single-cell 3.7v li-ion battery;
  • Recommended battery module is connected with 2PIN DuPont;
  • Recommended power options: voltage 5V, current 600ma above, such as: computer USB, 5V phone charger.


Applications

  • Lithium battery charge
  • Lithium battery voltage boosting to power Microduino core modules

Pictures

Micrmodule BM Front
Micrmodule BM Back

FQA

History

November 14, 2013 new release, major improvements:

  • Canceled VMOT pin, use the toggle switch directly and use the 5V port switching charge and discharge;
  • Boost pushbutton can fully control the boost, UPIN27 the GND loop off.
  • March 13, 2013 Batch completed.
  • March 1, 2013 20130202 edition model released, testing is no big problem.
  • February 2, 2013, using mobile power ASIC chip, re-layout.
  • December 31, 2012, released the test panels, the main problems are:
  • No 5V output;
  • Battery Interface leakage;
  • No power display.