Difference between revisions of "Sensor-Color LED"

From Microduino Wiki
Jump to: navigation, search
(Document)
(Programming)
 
(30 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{Language|Microduino-Color led}}
 
{{Language|Microduino-Color led}}
{| style="width: 800px;"
+
{| style="width: 80%;"
 
|-
 
|-
 
|
 
|
 
[[File: Microduino-WS2812-rect-v1.jpg|400px|thumb|right| Microduino-Color led]]
 
[[File: Microduino-WS2812-rect-v1.jpg|400px|thumb|right| Microduino-Color led]]
 +
The product number of Sensor-Color LED is: '''MSDL11'''
  
mCookie-Color LED is a colored LED sensor with an built-in IC control chip, which can be cascaded arbitrarily. With only one I/O port, you can control all the lights and each light can be controlled separately.
+
Sensor-Color LED is full color LED, adopting single serial cascade protocol.
  
 +
Only one I/O port can control the RGB color of each LED on the line.
  
 +
If the power supply supports, it can support the cascade of as many as 1024 LEDs.
  
  
==Sensor Pin Introduction==
+
 
{{Sensor_explain
+
 
|nameA=[[Sensor-Color LED]]
+
==Introduction of Sensor Pin==
|modeA=Digital Signal Output
+
{{ST_Pinout
|modeB=NC
+
|st_name=Color LED
 +
|pin3=Digital Output (One-wire communication)
 
}}
 
}}
==Feature==
+
 
*With single bus control. Only one I/O port to control, and complete the receiving and decoding of the data;
+
==Features==
*With built-in IC controller, and serial connection interfaces, which can cascade control;
+
*With small size which is easy to install;
*The three primary colors of each pixel point can realize 256-level brightness display, and achieve 16777216-color whole true color display. And the scanning frequency is not lower than 400Hz/s;
+
*Adopts single serial cascade protocol, which makes it cascadable;
*With ultra-low power and ultra-long life.
+
*Only one I/O port can control the RGB color of each LED on the line;
 +
*Can achieve 256-grade (1600W) toning of RGB, and the scanning frequency is not less then 400Hz/s
  
 
==Specification==
 
==Specification==
 
*Sensor voltage
 
*Sensor voltage
**3.3V~5V working voltage
+
**5V working voltage
  
*Size of the sensor  
+
*Size of the sensor
 
**Size of the board: 23.5mm*13mm
 
**Size of the board: 23.5mm*13mm
**1.27mm-spacing 4Pin interface connected with sensorhub;
+
**1.27mm-spacing 4Pin interface connected with sensorhub
 
**CAD drawing of the sensor: '''[[File:Sensor_CAD.zip]]'''
 
**CAD drawing of the sensor: '''[[File:Sensor_CAD.zip]]'''
**1.27mm-spacing 4Pin interface connected with sensorhub.
 
  
 
*Function description
 
*Function description
**Adopt WS2812 integrated control light source;
+
**Adopts WS2812 lampwick
**RGB of each pixel point can achieve 256-level brightness display;
+
**Adopts single serial cascade protocol, which makes it cascadable
**When the updating rate is 30 frame/s, the cascade number is not less than 1024;
+
**Only one I/O port can control the RGB color of each LED on the line
**When the transmission distance between any two points is not over 3 meters, don’t need to add any circuit.
+
**Can achieve 256-grade (1600W) toning or RGB, and the scanning frequency is not less then 400Hz/s
 +
**When the updating speed is 30 frame/s, the cascading number is no less than 1024
  
 
*Connection
 
*Connection
**This sensor can be connected to the following interfaces of the core:'''D2~D13'''
+
**This sensor can be connected to the following interfaces of the core: '''D2~D13''','''A0~A7'''
**Multiple sensors cascade: Connect the '''(<big>OUT</big>)''' of the former LED—Strip to the '''(<big>IN</big>)''' of the later Color_LED.
+
**Multiple sensors cascade: Connect the '''(<big>OUT</big>)''' of the former Sensor-Color LED to the '''(<big>IN</big>)''' of the latter Sensor-Color LED.
  
==Document==
+
==Documents==
 +
*Schematic diagram: '''[[File: Sensor-Color_LED.Zip]]'''
 +
*Main chip: '''[[File: WS2812 datasheet.pdf]]'''
 +
*You can use the sample programs in the following IDE libraries to do experiment on your own: [https://github.com/wasdpkj/Microduino-IDE-Support/tree/master/arduino-ide-Support/%5B1.6.x%5D-hardware(library)/hardware/Microduino/avr/libraries '''_07_Sensor_LED_WS2812''']
  
*Schematic diagram: '''[[File: Microduino_Sensor-Color_LED.Zip.pdf]]'''
+
==Usage==
*Crashdatasheet: '''[[File: Microduino_Sensor-Color_LED_datasheet.pdf]]'''
+
 
 +
===Basic Functionality===
 +
The ColorLED is a trinket which emits different colors based on the set red, green, and blue values. A Core module can control the ColorLED to output the desired colors.
 +
 
 +
Note: ColorLEDs can be connected together in a daisy chain fashion, and each ColorLED can be addressed individually using the index number. First ColorLED being 0, second ColorLED being 1, etc.
 +
===Programming===
 +
<tab name="Arduino for Microduino" style="width:100%;">
 +
==Introduction==
 +
The ColorLED is used as an output pin. The library is based on the Adafruit_NeoPixel library '''([https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library Read more])''' is used to control the ColorLED. Most of the functions are similar.
 +
==Key Functions==
 +
*Required Libraries: '''Microduino_ColorLED.h'''
 +
*Key Functions:
 +
** Constructor: '''ColorLED strip = ColorLED(num_colorleds, colorled_pin)''' - creates the ColorLED object
 +
***'''num_colorleds''' - defines the number of ColorLEDs connected to the '''colorled_pin'''
 +
***'''colorled_pin''' - defines the pin the ColorLEDs is connected to
 +
** '''strip.begin()''' - initializes the ColorLED object
 +
** '''strip.setPixelColor(colorled_index, red_value, green_value, blue_value)''' - configures the color value for that colorled index, must call '''strip.show()''' for the ColorLED to actually display the change
 +
***'''colorled_index''' - is the index of the ColorLED to configure, first in the chain is 0, second is 1, etc
 +
***'''red_value''' - red value to set, between 0 (off) and 255 (maximum on)
 +
***'''green_value''' - green value to set, between 0 (off) and 255 (maximum on)
 +
***'''blue_value''' - blue value to set, between 0 (off) and 255 (maximum on)
 +
** '''strip.show()''' - call this function after setting the color values for the ColorLED to actually display the color
 +
 
 +
==Example==
 +
This is a simple example which:
 +
*Turns the ColorLED to red
 +
*Waits 1 second.
 +
*Turns the ColorLED to green
 +
*Wait 1 second.
 +
*Turns the ColorLED to blue
 +
*Waits 1 second.
 +
 
 +
'''Note''': Important lines of code are highlighted.
 +
 
 +
<syntaxhighlight lang="cpp" highlight="1-3,5,6,8,9,11,12,20,21,23,24,30-33,38-41,46-49">
 +
//Include the required libraries to control the ColorLED
 +
//Based on: https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library
 +
#include <Microduino_ColorLED.h>
 +
 
 +
//Define the pin the ColorLED is connected to
 +
const int COLORLED_PIN = 6;
 +
 
 +
//Define the number of ColorLEDs daisy chained together
 +
const int COLORLED_NUM = 1;
 +
 
 +
//Declare and initialize the ColorLED object
 +
ColorLED strip = ColorLED(COLORLED_NUM, COLORLED_PIN);
 +
 
 +
void setup() {
 +
  // put your setup code here, to run once:
 +
 
 +
  //Initial serial communication port at 9600 baud
 +
  Serial.begin(9600);
 +
 
 +
  //Initialize the ColorLED class object
 +
  strip.begin();
 +
 
 +
  //Initialize all ColorLEDs to 'off'
 +
  strip.show();
 +
}
 +
 
 +
void loop() {
 +
  // put your main code here, to run repeatedly:
 +
 
 +
  //Configure the first ColorLED to maximum red
 +
  strip.setPixelColor(0, 255, 0, 0);
 +
  //Set the ColorLED
 +
  strip.show();
 +
 
 +
  //wait 1 second
 +
  delay(1000);
 +
 
 +
  //Configure the first ColorLED to maximum green
 +
  strip.setPixelColor(0, 0, 255, 0);
 +
  //Set the ColorLED
 +
  strip.show();
 +
 
 +
  //wait 1 second
 +
  delay(1000);
 +
 
 +
  //Configure the first ColorLED to maximum blue
 +
  strip.setPixelColor(0, 0, 0, 255);
 +
  //Set the ColorLED
 +
  strip.show();
 +
 
 +
  //wait 1 second
 +
  delay(1000);
 +
}
 +
</syntaxhighlight>
 +
Copy and paste the code above to the Arduino IDE or
 +
 
 +
Download the above example: n/a
 +
</tab>
  
==Development==
 
 
===Program Download===
 
===Program Download===
*Download and unzip the program'''[[File:Microduino_Sensor-Color_LED_Test.zip]]'''
+
*Download and unzip the program '''[[File:Sensor-Color-LED.zip]]'''
  
===Prgramming===
+
===Programming===
 
{{Upload
 
{{Upload
 
|nameA=[[Microduino-Core]], [[Microduino-USBTTL]]
 
|nameA=[[Microduino-Core]], [[Microduino-USBTTL]]
Line 60: Line 159:
  
 
===Hardware Setup===
 
===Hardware Setup===
*Referring to the following picture, connect Sensor-Crash to the digital port D6 of '''[[Microduino-Sensorhub]]'''.
+
*Referring to the following diagram, connect the Sensor-Color LED to the digital port D6 of '''[[Microduino-Sensorhub]]'''.
 
<br>
 
<br>
 
[[file:Microduino-sensorhub_Shake.JPG|thumb|400px|left]]
 
[[file:Microduino-sensorhub_Shake.JPG|thumb|400px|left]]
 
<br style="clear: left"/>
 
<br style="clear: left"/>
  
===Result Observation===
+
===Results===
*After the download, observe the led strip;
+
*After download, observe the LED strip..
*LED twinkles in red, and green successively with the interval of 1s.
+
*LED flashes in red and green successively with the interval of 1s.
  
 
==Application==
 
==Application==
*LED full color light letter lamp string, LED full color module set, LED full color soft lamp strip and hard lamp strip, and LED guardrail tube.
+
*LED full color light source
*LED point light source, LED pixel screen, all kinds of electronic products, LED shaped screen, and electrical equipment Marquee.
 
  
 
==Project==
 
==Project==
Line 79: Line 177:
 
* '''[[Applause Enthusiasm Detection]]'''
 
* '''[[Applause Enthusiasm Detection]]'''
 
* '''[[Colored LED]]'''
 
* '''[[Colored LED]]'''
 
==Purchase==
 
 
 
==History==
 
==History==
  

Latest revision as of 20:06, 1 December 2017

Language: English  • 中文
Microduino-Color led

The product number of Sensor-Color LED is: MSDL11

Sensor-Color LED is full color LED, adopting single serial cascade protocol.

Only one I/O port can control the RGB color of each LED on the line.

If the power supply supports, it can support the cascade of as many as 1024 LEDs.



Introduction of Sensor Pin

Sensor backpin.png

Color LED
General Pin Out Sensor / Trinket's Pin Out
PIN1 (GND) GND
PIN2 (VCC) VCC
PIN3 (SIGNAL-A) Digital Output (One-wire communication)
PIN4 (SIGNAL-B) Not Connected
  • General Pin Out is the standard pin out of a Sensor / Trinket connector.
  • Sensor / Trinket's Pin Out is this specific Sensor / Trinket's wiring in relation to the General Pin Out.
  • SIGNAL-A / SIGNAL-B are signals that could be digital input, digital output, analog input or analog output. Or special signals such as serial communication (SoftwareSerial, IIC (I2C), etc) or other special signals.
  • Not Connected refers to the Pin not being used for this particular Sensor / Trinket.
  • Read more about the hub module.

Features

  • With small size which is easy to install;
  • Adopts single serial cascade protocol, which makes it cascadable;
  • Only one I/O port can control the RGB color of each LED on the line;
  • Can achieve 256-grade (1600W) toning of RGB, and the scanning frequency is not less then 400Hz/s

Specification

  • Sensor voltage
    • 5V working voltage
  • Size of the sensor
    • Size of the board: 23.5mm*13mm
    • 1.27mm-spacing 4Pin interface connected with sensorhub
    • CAD drawing of the sensor: File:Sensor CAD.zip
  • Function description
    • Adopts WS2812 lampwick
    • Adopts single serial cascade protocol, which makes it cascadable
    • Only one I/O port can control the RGB color of each LED on the line
    • Can achieve 256-grade (1600W) toning or RGB, and the scanning frequency is not less then 400Hz/s
    • When the updating speed is 30 frame/s, the cascading number is no less than 1024
  • Connection
    • This sensor can be connected to the following interfaces of the core: D2~D13,A0~A7
    • Multiple sensors cascade: Connect the (OUT) of the former Sensor-Color LED to the (IN) of the latter Sensor-Color LED.

Documents

Usage

Basic Functionality

The ColorLED is a trinket which emits different colors based on the set red, green, and blue values. A Core module can control the ColorLED to output the desired colors.

Note: ColorLEDs can be connected together in a daisy chain fashion, and each ColorLED can be addressed individually using the index number. First ColorLED being 0, second ColorLED being 1, etc.

Programming

Introduction

The ColorLED is used as an output pin. The library is based on the Adafruit_NeoPixel library (Read more) is used to control the ColorLED. Most of the functions are similar.

Key Functions

  • Required Libraries: Microduino_ColorLED.h
  • Key Functions:
    • Constructor: ColorLED strip = ColorLED(num_colorleds, colorled_pin) - creates the ColorLED object
      • num_colorleds - defines the number of ColorLEDs connected to the colorled_pin
      • colorled_pin - defines the pin the ColorLEDs is connected to
    • strip.begin() - initializes the ColorLED object
    • strip.setPixelColor(colorled_index, red_value, green_value, blue_value) - configures the color value for that colorled index, must call strip.show() for the ColorLED to actually display the change
      • colorled_index - is the index of the ColorLED to configure, first in the chain is 0, second is 1, etc
      • red_value - red value to set, between 0 (off) and 255 (maximum on)
      • green_value - green value to set, between 0 (off) and 255 (maximum on)
      • blue_value - blue value to set, between 0 (off) and 255 (maximum on)
    • strip.show() - call this function after setting the color values for the ColorLED to actually display the color

Example

This is a simple example which:

  • Turns the ColorLED to red
  • Waits 1 second.
  • Turns the ColorLED to green
  • Wait 1 second.
  • Turns the ColorLED to blue
  • Waits 1 second.

Note: Important lines of code are highlighted.

//Include the required libraries to control the ColorLED
//Based on: https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library
#include <Microduino_ColorLED.h>

//Define the pin the ColorLED is connected to
const int COLORLED_PIN = 6;

//Define the number of ColorLEDs daisy chained together
const int COLORLED_NUM = 1;

//Declare and initialize the ColorLED object
ColorLED strip = ColorLED(COLORLED_NUM, COLORLED_PIN);

void setup() {
  // put your setup code here, to run once:

  //Initial serial communication port at 9600 baud
  Serial.begin(9600);

  //Initialize the ColorLED class object
  strip.begin();

  //Initialize all ColorLEDs to 'off'
  strip.show();
}

void loop() {
  // put your main code here, to run repeatedly:

  //Configure the first ColorLED to maximum red
  strip.setPixelColor(0, 255, 0, 0);
  //Set the ColorLED
  strip.show();

  //wait 1 second
  delay(1000);

  //Configure the first ColorLED to maximum green
  strip.setPixelColor(0, 0, 255, 0);
  //Set the ColorLED
  strip.show();

  //wait 1 second
  delay(1000);

  //Configure the first ColorLED to maximum blue
  strip.setPixelColor(0, 0, 0, 255);
  //Set the ColorLED
  strip.show();

  //wait 1 second
  delay(1000);
}

Copy and paste the code above to the Arduino IDE or

Download the above example: n/a

Program Download

Programming

  • Follow the Software Getting Started Guide.
  • Select the Board, Processor and Port.
  • Click [File]->[Open], browse to the project program address, and click "Microduino_Sensor-Color_LED_Test.ino" to open the program.
  • After confirming all these items are correct, click "→" to download the program to the development board.

Hardware Setup

  • Referring to the following diagram, connect the Sensor-Color LED to the digital port D6 of Microduino-Sensorhub.


Microduino-sensorhub Shake.JPG


Results

  • After download, observe the LED strip..
  • LED flashes in red and green successively with the interval of 1s.

Application

  • LED full color light source

Project

History

Gallery

File:MicroduinoColorLED-F.JPG
mCookie-Color_LED-Front
File:Microduino-ColorLED-b.JPG
mCookie-Color_LED-Back
Retrieved from "https://wiki.microduinoinc.com/index.php?title=Sensor-Color_LED&oldid=21716"