From Microduino Wiki
(Redirected from Microduino-Buzzer)
Jump to: navigation, search
Language: English  • 中文

The product number of Sensor-Buzzer is: MSDO11

Sensor-Buzzer is a passive buzzer. Like a magnetic speaker, it needs voltage with different frequency so that it can make sound accordingly. The pitch becomes louder when the frequency gets higher.

Introduction of Pins

Sensor backpin.png

General Pin Out Sensor / Trinket's Pin Out
PIN3 (SIGNAL-A) Digital Output
PIN4 (SIGNAL-B) Not Connected
  • General Pin Out is the standard pin out of a Sensor / Trinket connector.
  • Sensor / Trinket's Pin Out is this specific Sensor / Trinket's wiring in relation to the General Pin Out.
  • SIGNAL-A / SIGNAL-B are signals that could be digital input, digital output, analog input or analog output. Or special signals such as serial communication (SoftwareSerial, IIC (I2C), etc) or other special signals.
  • Not Connected refers to the Pin not being used for this particular Sensor / Trinket.
  • Read more about the hub module.


  • Controllable sound frequency (eg: You can achieve the effect of piano spectrum with it. )
  • Small size which is easy to install.


  • Voltage
    • 3.3V~5V working voltage
  • Size
    • Size of the board: 23.5mm*13mm
    • 1.27mm-spacing 4Pin interface connected with sensorhub.
    • The CAD drawing of the sensor: File:Sensor
  • Technical parameters
    • Drive with 2K~5K square wave
    • The sound frequency is controllable.
  • Connection
    • This sensor can be connected to the following interfaces of core: A0~A7,D2~D13



Basic Functionality

The Buzzer Trinket is a simple trinket which emits sound when passed with a frequency. A Core module can control the frequency of the Buzzer output.

Buzzer Trinket State Table
Pin State Buzzer State
No Frequency No Buzzing
Frequency Present Buzzing



The Buzzed Trinket is used as an output pin. Special functions on the Core module is used to generate a frequency signal to the Buzzer.

Key Functions

  • Required Libraries: None
  • Key Functions:
    • tone(pin_number, frequency) - starts generating a frequency signal on the pin, will not stop until noTone(pin_number) is called (Read more)
      • pin_number - is the pin number that the trinket is connected to
      • frequency - a frequency value to generate on the pin
    • noTone(pin_number) - stops generating a frequency on the pin (Read more)
      • pin_number - is the pin number that the trinket is connected to
    • tone(pin_number, frequency, duration) - generates a frequency signal on the pin for a set amount of time (Read more)
      • pin_number - is the pin number that the trinket is connected to
      • frequency - a frequency value to generate on the pin
      • duration - the duration in milliseconds to generate the frequency signal


This is a simple example which:

  • Starts the Buzzer at a 440hz frequency.
  • Waits 1 second.
  • Turns off the Buzzer.
  • Wait 1 second.
  • Runs the Buzzer at a 294hz frequency for 2 seconds
  • Waits 5 seconds.

Note: Important lines of code are highlighted.

//Define the pin the buzzer is connected to
const int BUZZER_PIN = 6;

void setup() {
  // put your setup code here, to run once:

  //Initial serial communication port at 9600 baud

void loop() {
  // put your main code here, to run repeatedly:

  //Start the Buzzer with a 440hz frequency
  tone(BUZZER_PIN, 440);
  //Wait 1 second
  //Turn off the Buzzer

  //Wait 1 second

  //Run the Buzzer with a 294hz frequency for 2000 milliseconds (2 seconds)
  tone(BUZZER_PIN, 294, 2000);

  //Wait 5 seconds

Copy and paste the code above to the Arduino IDE or

Download the above example: n/a

Program Download


  • Follow the Software Getting Started Guide.
  • Select the Board, Processor and Port.
  • Click [File]->[Open], browse to the project program address, and click "Sensor-Buzzer Test.ino" to open the program.
  • After confirming all these items are correct, click "→" to download the program to the development board.

Hardware Setup

  • Referring to the following diagram, connect the Sensor-Buzzer to digital pin D6 of Microduino-Sensorhub.

Microduino-sensorhub Shake.JPG


  • After download, you can hear the alarming sound.


The buzzer can produce many weird sound. Maybe you can add some keys to it to compose a piece of wonderful music.





Sensor-Buzzer Front




  • Front
Microduino-Cube-Station Front
  • Back
Microduino-Cube-Station Back
Retrieved from ""